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1. Introduction 

Finding solutions to genuinely important epistemic challenges typically exceeds the capabilities 

of a single knower. Science, research and development laboratories, and the work of expert 

committees are all instances of knowledge production, which require coordinated effort from 

several agents. Furthermore, these situations essentially involve interaction and a division of 

cognitive labor among the members of the group or community: Difficult problems are attacked 

by dividing them into more tractable sub-problems, which are then allocated to subgroups and 

ultimately to individual group members. In this chapter, we use the notion of epistemic community 

to refer to such a group of agents faced with a shared epistemic task.1 We regard division of labor 

between the members of the group as a necessary property of an epistemic community, so as to 

distinguish such groups from mere statistical or aggregative epistemic collectives, where there is 

no communication or coordination between group members (cf. Surowiecki 2005; Sunstein 2006). 

However, as we will see, the division of labor and the associated conception of cognitive diversity 

can be understood in several different ways. 

                                                

 

1 Following a usage common in the modeling literature, we understand an epistemic community as a social 

system consisting of producers of knowledge. In a broader sense of the notion (cf. Longino 1990), epistemic 

communities can be seen to encompass also the consumer side, i.e. those consulting the results. 
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In this chapter, we provide a review of the modeling work, which has aimed at understanding the 

functioning of epistemic communities.2 Modeling done by social epistemologists resides at an 

interesting junction of various strands of inquiry. Many of the themes touched upon by social 

epistemologists (e.g., scientific reputation and authority, reward schemes in science) had already 

been studied by sociologists of science such as Robert Merton (1973) and Pierre Bourdieu (1975). 

Furthermore, the disciplinary origins of the various modeling methodologies used in social 

epistemology can typically be traced back to economics and decision theory, organization 

science, AI, and ecology. However, within social epistemology, formal modeling work has often 

formed its own niche and the integration of modeling work with the rest of research in social 

epistemology has often been less than satisfying. Hence, it is often not clear how the simple 

models of epistemic communities contribute to (a) the more general problems studied by social 

epistemology as a whole, and (b) how they should be connected to relevant findings from 

disciplines such as social psychology and organization studies.  

After providing an overview of some of the most prominent modeling approaches in social 

epistemology (sections 2 to 6), in the final section of our review we try to go some way towards 

answering these questions. We sketch a general approach to interpreting models, thereby 

suggesting how they could be integrated with conceptual and empirical work (e.g., case studies) 

done in the rest of the field. Furthermore, by showing that the models in social epistemology are 

in many ways parallel to those developed in other fields that study collective knowing and problem 

solving, our contribution hopefully helps to position the philosophical work within this multi-

disciplinary research area. We suggest that there is a clear epistemic benefit from seeing these 

parallels more clearly: It allows us to see where the strengths and blind spots of models presented 

in various fields are, and where promising future contributions might lie.3 

                                                

 

2 For alternative ways of organizing the material, see Weisberg 2010 and Muldoon 2013. 

3 In this chapter, most of the attention is on epistemic communities in science. One might object to this by 

pointing out that the scope of social epistemology is broader than science. We focus on scientific problem 

solving for the following reasons: First, science has been the main target of much of the work that we review. 
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2. The invisible hand in science: From individual irrationality to collective 

rationality 

In a now classic paper; Philip Kitcher (1990) set out to examine the division of cognitive labor in 

a community of scientists. By employing a combination of modeling tools from microeconomic 

theory (individual maximization of expected utility and equilibrium), Kitcher investigates how 

research resources should be allocated among alternative competing research programs, 

methods, or theories. In light of several examples drawn from the history of science, Kitcher 

argues that in many cases, a community of scientists should hedge its bets. All research effort 

should not be allocated only to the study of the currently most strongly confirmed or most 

promising alternative so as not to prematurely rule out potentially true but not yet well-confirmed 

hypotheses. Nevertheless, from the point of view of individual epistemic rationality, every scientist 

should pursue exactly the most promising avenue of research best supported by the currently 

available evidence.  

There is, therefore, a discontinuity between the requirements of individual and collective 

rationality. Whereas an epistemic community might benefit from diversity provided by some 

stubbornness or biased appraisals of evidence, the rational behavior for each truth-motivated 

individual agent appears to be to join the best supported research program, method, or theory. 

This suggests that the rationality of individual agents (understood as each one optimizing their 

individual pursuit of the truth) is not sufficient for achieving good collective outcomes in research. 

Kitcher’s model aims to show that individual rationality is not necessary for collective epistemic 

efficiency either. Like Bourdieu (1975), Kitcher treats scientists as self-interested entrepreneurs 

in the search for personal prestige. The model suggests that under an appropriate reward 

allocation scheme, the individual incentives of a population of ‘sullied’ self-interested agents, 

                                                

 

Secondly, scientific problem solving is a particularly challenging example: it is often not routine-like, nor is 

the social process of research hierarchically organized. Instead, the questions addressed by scientists are 

often open-ended, and the process is largely self-organized.  
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motivated not by truth as such but by individual glory garnered from finding the truth, drive the 

population towards the collectively optimal resource allocation.  

Suppose that there are two alternative methods for finding out the structure of a Very Important 

Molecule. Truth, once discovered, is easy to recognize, and the probability of arriving at the truth 

with a given method is an increasing function of the number of people applying the method. 

Furthermore, suppose that when the truth is found by using a given method, each individual 

having used that method has an equal probability of being the one making the discovery and thus 

getting all the credit. Because of the way in which credit is allocated, choosing between the two 

alternative methods becomes a strategic decision involving not just the expected epistemic utility 

of the methods, but also the number of people already using them. Under these conditions, 

egoistic credit-seeking behavior may help to ensure that some resources are also allocated to the 

currently less well supported alternatives and thus to maintain crucial epistemic diversity in the 

community.  

In the last chapter of his 1993 book Advancement of Science, Kitcher broadens his economics-

inspired investigation of the epistemically pure and sullied agents by employing analytical 

machinery from population biology. This allows him to address questions about whether scientists 

should cooperate or go solo, how attribution of epistemic authority is done, and further questions 

related to trust, replication, and influence of scientific tradition on theory choice. We do not go into 

these arguments in detail here. Many of the topics introduced by Kitcher have been discussed in 

the models described in the sections below. Generally, the discrepancy between the micro and 

the macro has perhaps been the most lasting result of Kitcher’s contribution to social 

epistemology, as it underscores the importance of studying the social processes of knowledge 

production (cf. Mayo-Wilson et al. 2011). Hence, epistemic communities can be studied as 

systems manifesting macro-level properties not reducible to the properties of their members, and 

the efficiency of such systems appears to be determined by at least the three following kinds of 

factors: 

• The distribution of the cognitive properties of individual agents in the community (cognitive 

diversity) 

• The organizational properties of the community (e.g., its communication structure, reward 

scheme) 



 

5 

 

• The nature and difficulty of the problem-solving task faced by the community 

As we will see, the key concepts of cognitive diversity, division of cognitive labor, and resource 

allocation have subsequently been given several interpretations - often leading to confusion and 

difficulties in combining and comparing results from several models. We now turn to some of the 

extensions and examination of Kitcher’s modeling approach. 

3. Extending Kitcher’s approach  

Kitcher’s argument rested crucially on the priority rule for apportioning credit. A further 

development of the resource allocation view is Michael Strevens’ (2003) model of the role of 

reward schemes in resource allocation.  

Already Merton (1973) had pointed out that priority disputes have always been a feature of 

modern science. There are no second prizes in research, only the first person to a discovery gets 

the recognition and prestige and virtually nothing is left for the runner-ups. But why is credit 

allocated due to this priority rule, and not based on a scientist’s contribution to a research program 

(MARGE rule), or simply the success of her research program (GOAL rule)? And why is the 

priority rule applied in a peculiarly rigid way, even when the time difference between discoveries 

is a matter of days or hours?  

Strevens argues that what is special about science as a collective endeavor is that the runner-

up's contribution adds nothing to the collective good. Once a result has been discovered, no value 

to the collective is produced by discovering it again. Strevens uses basic economic principles 

(“what happens at the margin when the reward scheme changes”) to compare the priority rule, 

MARGE, and GOAL, and shows that the priority rule allocates the comparatively largest 

proportion resources to the most potential research program: When reward is based neither on 

work or effort, or even on achievement as such, but on achieving-first, the resulting distribution of 

research effort over competing alternatives most closely resembles the collectively optimal 

allocation.  

Note, however, that there is a problematic functionalist step in Strevens’ explanation: without an 

additional mechanism, the mere fact of congruence between the individual and the collective good 
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fails to explain why the priority rule in fact prevails in actual scientific research. Furthermore, 

Piimies and Sappinen (mimeo) point out that the analytical approach taken by Kitcher (and 

Strevens) bears a striking resemblance to a branch of economics called neoclassical economics 

of innovation. A comparison to this literature reveals that most of Kitcher’s model-based 

arguments are in fact highly sensitive to the selection of initial assumptions. Moreover, Kitcher 

exacerbates the problem by introducing seemingly ad-hoc modifications to his models “on the fly” 

- a move strictly forbidden by the modeling methodology in economics. For example, the central 

result about the connection between credit seeking and beneficial diversity rests crucially on the 

assumption that the agents are risk-neutral. Such fragility of results with respect to simplifying 

assumptions dramatically complicates the evaluation of the empirical implications of the models. 

This does not, by any means, invalidate Kitcher’s (or his followers’) achievements, but implies 

that such results should be considered more as theoretical suggestions, not as evidence or proof. 

4. Theory choice in epistemic networks 

Another key aspect of research modeled in Kitcher’s investigations in the Advancement was a 

scientist’s decision of whether or not to borrow results from others given their (observable) rate of 

hitting on the truth. Recently, the tension between individual theoretical exploration and the need 

to converge on a solution has been explored by Kevin Zollman (2010, 2013). Using ideas from 

statistics, economics, and network theory, Zollman models theory choice in terms of so-called 

bandit problems (see below).4 Zollman does not study epistemically sullied credit-seeking agents 

as Kitcher and Strevens do, but the same basic result holds: Individual rationality alone is not 

sufficient for reliable convergence to the truth on the social level.  

Zollman portrays a scientist’s choice between competing theories (or methods) as analogical to 

a learning problem faced by a gambler, who has to select between two slot machines with initially 

unknown winning rates. Each bandit is postulated to have some objective probability of success, 

                                                

 

4 Zollman’s model generalizes a framework proposed in economics by Bala and Goyal (1998).  
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and the payoff from winning from a machine is considered analogous to the payoff received from 

a successful application of a theory. Furthermore, pulling a machine amounts to getting more 

information about the truthfulness of a theory by running an experiment. However, because the 

agent’s resources are limited, only a limited number of pulls can be conducted. Hence, she must 

devise a strategy for pulling the two levers so as to efficiently converge on the more lucrative 

machine.  

The learning challenge presented by such bandit problems is non-trivial because of the trade-off 

between exploration and exploitation. In the short term, each agent gets the largest payoff by only 

running the best experiment so far discovered, whereas exploration of other alternatives is 

typically a precondition for long-term success. Zollman constrains his study to simple myopic 

agents who always sample only the best alternative and leave exploration to other members of 

their epistemic network. That is, in Zollman’s simulations, in addition to individual experimentation, 

the agents also receive the experimental results obtained by their network neighbors. These 

sources of evidence are integrated with the agent’s existing knowledge by Bayesian 

conditionalization.  

The most well-known result from Zollman’s models is that, perhaps counterintuitively, too much 

social information can be harmful. In densely connected epistemic networks, misleading evidence 

obtained in the early stages of the simulated research process can spread quickly through the 

network, suppress experimentation on alternative methods, and lead the whole community to 

converge on a suboptimal alternative. That is, it might be that correct hypotheses do not get a fair 

chance. For example, in the research on peptic ulcer disease, a single early study on the causes 

of the disease proved so influential in the field that the whole research community was wrongly 

convinced for a half a century that the illness could not be caused by bacteria (Zollman 2010).  

However, densely connected networks perform comparatively better when agents’ initial beliefs 

are strong. What these two findings together suggest is that what is common to epistemically 

successful communities is transient diversity, a proper balance between the diversity of beliefs 

and consensus. Such a balance allows, at first, sufficient exploration of alternatives, but eventually 

leads to convergence on truth. 
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Zollman and his coauthors have extended the bandit approach in subsequent papers (Mayo-

Wilson et al. 2011; Zollman 2013). Many of Zollman’s simplifying assumptions were also relaxed 

by Alexander (2013). He modifies Zollman’s approach in three ways. First, instead of assuming 

Bayesian conditionalization in evidence uptake, he studies heuristic agents relying on 

reinforcement learning (cf. Russell and Norvig 2003, ch. 6). Secondly, the model does not assume 

a fixed structure of the epistemic network, but instead, network formation is assumed to be based 

on preferential attachment, where agents form connections to their peers based on the observed 

success of a peer’s approach. Thirdly, Alexander further complicates the learning problem faced 

by the scientist agents by adding the possibility of theoretical innovation by attaching new arms 

to the bandit.  

Alexander’s model suggests that in this more difficult learning task, preferential attachment helps 

successful theories to spread in the population, and hence a population of connected agents can 

converge more quickly than individual learners. The spreading of a very good theory (of success 

probability close to 1) in the network is, however, conditional on the fact that either old theories 

get sometimes forgotten, or that agents time discount old information about theories. Both 

mechanisms prevent the network from getting locked in into suboptimal belief and communication 

patterns. 

Compared to Kitcher’s pioneering work, the simulation methods used by Zollman and Alexander 

make it possible to study several important properties of epistemic communities not within the 

reach of the earlier analytical models (such as the dynamics of belief change, heterogeneity, 

details of the learning heuristics used by agents, and the influence of the communication structure 

of the community on its epistemic performance). The big advantage of such agent based 

simulation models (ABMs) is that they allow viewing group problem solving not only as a formal 

decision problem, but rather as a form of coordinated social behavior arising from the cognitive 

mechanisms and interpersonal processes involved. Importantly, the models suggest that no one 

learning heuristic or communication structure of an epistemic community is optimal for all research 

tasks. This suggests that the computational study of epistemic communities should adopt the 

more fine-grained strategy of mapping the dependencies between the individual properties of 

agents, properties of the social system, and the task addressed by the community. 
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However, computational modeling also has its disadvantages. Compared to analytical models, 

simulations often come with more parameters, and it is often hard to see what really drives the 

obtained results. In addition to this opaqueness of the models, the results obtained often hold only 

in limited parts of the parameter space. For example, the generalizability of Zollman’s results have 

been questioned both on theoretical and empirical grounds. Rosenstock et al. (forthcoming) 

demonstrate that the negative Zollman effect of connectivity is in fact highly sensitive to the 

selection of parameter values. Similarly, when Mason and Watts (2012) investigated 

experimentally the problem solving performance of epistemic networks, they found that highly 

connected networks of problem solvers outperformed sparser ones even in tasks thought to be 

conducive to phenomena similar to the Zollman effect.5  

5. Opinion dynamics  

Since the 1950s, social scientists have developed mathematical models addressing the question 

of why some social processes lead to polarization of opinions, whereas others lead to the 

formation of consensus. In the classical paradigm of opinion dynamics, agents have opinions 

represented by numerical quantities, and the model is used to investigate the way in which 

different initial profiles of opinions and different social processes of information exchange 

influence the convergence and clustering of opinions.  

Hegselmann and Krause (2002, 2006, 2009) imported this modeling approach to social 

epistemology by adding to the model the effect of truth seeking: In addition to social information, 

some agents in the population also revise their opinions based on a signal coming from “the truth” 

                                                

 

5 The problems with the Zollman model do not compromise the more general exploration-exploitation trade-

off observed already by March 1991 and Lazer and Friedman 2007: A well-functioning epistemic community 

must strike a balance between exploration and exploitation. Whereas efficient dissemination and uptake of 

information between the nodes of a network improves the behavior of the epistemic community in the short 

term, allocating sufficient resources to exploratory activities is necessary for long term success. 
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(i.e., by running experiments). The two main analytical results from their model (HK) are (1) the 

funnel theorem and (2) the leading-the-pack theorem.  

The first states that if all agents are truth seekers (even to a modest degree), the population will 

ultimately reach a consensus that lies arbitrarily close to the truth. The latter theorem concerns 

the more interesting situation in which only some of the agents aim at the truth while others rely 

solely on social information (Hegselmann and Krause’s somewhat strained interpretation of the 

notion of division of cognitive labor). According to the theorem, for all initial profiles, even one 

agent with a truth signal suffices for the convergence of population on truth, on the condition that 

all non-truth seekers are connected6 to a truth seeker through a chain of other agents. The 

extensive set of simulations conducted by the authors examines the parameter spaces of variants 

of the model in order to assess the generality of the analytical results.  

Hegselmann and Krause’s results suggest that under appropriate forms of social exchange, even 

a small minority of truth-guided agents in an epistemic community can lead the whole community 

to the truth. Riegler and Douven (2009) have recently extended the HK model by allowing the 

transmitted information to be noisy, and by representing agents’ belief states as sets of 

propositions in a finite language. Like the original HK model, Riegler and Douven’s model cannot 

directly answer the question of how much weight we should assign to the opinions of our 

colleagues. The model seems, however, to refine Hegselmann and Krause’s findings by 

suggesting conditions for the quality of evidence: only sufficiently good evidence transmitted 

between agents facilitates convergence to the truth, whereas poor quality evidence can lead to 

the fragmentation of the population into several disagreeing groups. 

                                                

 

6 Connectedness here means that the opinions are not too far from each other and, consequently, 

communication between the two agents remains possible.  
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6. Diversity and collaboration  

Although ostensibly about diversity – commonly associated with a division of cognitive labor and 

the accumulation of community results – most of the models above have surprisingly little to say 

about epistemic collaboration in research (D’Agostino 2009). Typically they depict a competition 

between individual agents which, under appropriate conditions, leads, as if by an invisible hand, 

to good collective outcomes. However, in science there is also more profound division of cognitive 

labor between agents, research groups, and even between scientific disciplines. The ability of a 

research community to solve problems that exceed the capacities of any individual actor or group 

is based on recursively dividing problems into smaller sub-problems solvable by finite cognitive 

actors, and subsequently piecing together the sub-solutions to answer the original complex 

question. Central aspects of cognitive diversity involved in such distributed problem solving 

process are not represented in any of the models above: there is no representation of (a) variation 

in research heuristics or (b) specialization on a topic or question, which would differentiate an 

agent from the others.  

Both heterogeneous heuristics and specialization are aspects of what we call cognitive diversity: 

due to different backgrounds, training, and talent, researchers might have different reasoning 

styles and, hence, different agents could contribute differentially to various aspects of the 

research topic. Here we discuss two recent contributions to the study of cognitive diversity and its 

consequences to collective problem-solving. 

Michael Weisberg and Ryan Muldoon (2009) put forward a model that depicts research in a 

scientific field as a population of agents foraging on an epistemic landscape. Different patches of 

the landscape correspond to different research approaches, and the height of a patch represents 

the epistemic significance of that approach. That is, within each scientific field, different 

combinations of questions, available background theories, and methods have different potential 

to uncover the significant truths in the domain of research.  

What makes this a model of cognitive diversity is that, there are three different kinds of agents in 

the population: controls, followers and mavericks. Each kind of agent has a different way of doing 

research. Followers tend to adopt approaches already examined by others, mavericks avoid 

them, and controls are insensitive to social information and rely solely on their own information 
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about how to improve their epistemic lot. Weisberg and Muldoon’s simulations suggest (once 

again) the intuitively plausible result that diversity is good for a scientific community. Their most 

surprising finding is, however, that the maverick social learning strategy which uses information 

about others to avoid doing the same as others is the most effective way to promote the progress 

of research on a scientific field. 

By importing a fitness-landscape based modeling approach from ecology, Weisberg and Muldoon 

introduced a new way of implementing cognitive diversity in a simulation model. However, the 

reliability and generality of their results have been called into question. The problem is, yet again, 

in the non-robustness of the results. Critics have shown that replacing some of the assumptions 

made by Weisberg and Muldoon by other, just as plausible, ones, different and even contradictory 

results regarding the role of cognitive diversity can easily be derived (Alexander et al. 2015; 

Thoma 2015; Pöyhönen 2016).  

An influential approach to modeling cognitive diversity, which has received attention in economics, 

organization science, and recently also in philosophy, was introduced by Lu Hong and Scott Page 

(2000, 2004). Building on the Newell and Simon’s (1972) view of problem-solving as heuristic 

search, Hong and Page portray diversity as consisting of two components: each agent having her 

particular (a) way of representing the problem (‘perspective’) and a (b) set of rules for devising 

new problem solutions from earlier ones (‘heuristic’).  

In Hong and Page (2000), the problem faced by a community of problem-solvers is represented 

as that of constructing a bitstring – a sequence of ones and zeros – associated with the highest 

possible payoff. The bitstring in effect represents a structured solution to a complex problem, each 

bit standing for a possible solution to a subproblem. Each agent is characterized by a set of 

heuristics for flipping the states of the bits in the string, and an agent’s individual performance 

level is the expected value of the value function at the local optimum at which the individual’s 

search is drawn to a halt. Collaborative group performance, in turn, is determined by the value of 

the configuration reached by having the agents sequentially apply their own heuristics to 

manipulate the same binary string. Once an agent cannot improve on a solution, the turn is given 

to the next agent employing a different bit-flipping rule. 
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In such a setting, the diverse perspectives and heuristics used by agents can lead to globally 

optimal collective solutions, although no individual agent can reach the optimum on her own. Hong 

and Page use the model to argue that in group problem solving, adding a new problem solver to 

the group often does not have a diminishing marginal utility for the collective: Depending on the 

order in which agents’ heuristics are applied to the problem, it can even be so that the addition of 

the last agent has the largest marginal contribution to collective performance, if she happens to 

contribute the missing piece to the puzzle by applying a novel heuristic that helps the population 

to escape a local optimum.  

Using a similar model, Hong and Page (2004) derived several additional results about the 

usefulness of cognitive diversity in problem solving. They show that under quite general 

conditions, a diverse group of randomly chosen agents can outperform a homogenous group 

consisting of individually best-performing problem solvers. They call this the diversity-trumps-

ability theorem. The theorem suggests, roughly, that to maximize problem-solving efficiency, a 

company should rather hire 20 random problem solvers than 20 of the best performers, who, 

being the best and hence equally good, would have to be cognitively similar. The result also 

suggests a conjecture regarding science policy: Perhaps the current emphasis on individual 

“excellence” in science funding should be tempered with policies aimed at maintaining diversity? 

7. Conclusion: What can philosophers learn from models? 

So what, in the end, have models of collective knowing thus far achieved and what are the future 

prospects for the field? Whereas much, even most of, science has become fundamentally model-

based, in philosophy modeling methodology is still relatively new. Consequently, work in the field 

is sometimes characterized by the lack of a clear understanding about the goals and the added 

value of modeling in general, and of common agreed-upon methodological constraints.  

What makes a good model? First of all, worthwhile model results should not be immediately 

obvious logical consequences of the used assumptions. Models, both analytical and simulation, 

are externally supported arguments, and the model as such does not do any work, if seeing the 

assumptions already suffices to make the conclusions obvious (Kuorikoski and Pöyhönen, 

unpublished). With hindsight, some of the early analytical models of science suffer from such 

theoretical sterility (see, for example, Goldman and Shaked 1991). Second, a model should be 
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theoretically well motivated in that it should be built on clear theoretical ideas, from which further 

implications are drawn with the help of the model.7 In social epistemology, however, much of the 

modeling work appears to be driven by the modeling framework itself. Model templates are often 

borrowed from elsewhere and simply given a new (not necessarily very convincing) interpretation 

in terms of epistemic properties of social systems.  

Thirdly, models should be reliable in the sense that the results depend only on the empirically 

interpretable substantial assumptions and do so in a way, which makes the empirical 

interpretation of the results as straightforward as possible. As we have already pointed out, many 

of the models in social epistemology are problematic in these respects, because the central 

results often only hold in a very restricted part of the parameter space or under very specific 

technical assumptions. If the key results are not robust with respect to essentially arbitrary 

modeling assumptions, which are made only for the sake of making the model “work,” and which 

lack a clear empirical interpretation, then inferring from the demonstrated results to real epistemic 

social systems amounts to little more than guesswork. Running models and simulations can be 

seen as a new exciting method for philosophers, but we have a lot to learn from scientists engaged 

in modeling. 

Nevertheless, we firmly believe modeling to be a valuable methodology for thinking about 

epistemically well-designed social systems. Theorizing in natural language about “emergent” 

properties that arise from complex organization and interaction is extremely limiting and prone to 

error – especially since when faced with structurally and interactionally complex systems, our pre-

theoretic intuitions often tend to become increasingly unreliable. Modeling is in many cases a 

prerequisite for having theoretical understanding about the dynamics of collective cognitive 

systems: convergence, equilibria, and the micro-mechanisms involved. Working with models is 

an invaluable part of theorizing and analysis, because it forces us to make ideas precise, and 

allows the transparent examination of their coherence. ABMs in particular make it possible to 

                                                

 

7 An elegant example of such model building can be found in Hegselmann and Will (2013).  
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examine complex scenarios where our intuitions and reasoning falter. The combination of a large 

group of heterogeneous agents following simple rules often leads to results that are impossible 

to anticipate by using only analytical or “conceptual” methods.  

One possible strategy for improving the abstract models in social epistemology would be to 

calibrate them with empirical data. However, relevant data about properties of research fields, 

problems, and research strategies employed by scientists is not readily available – and often it is 

not even clear how such evidence should be obtained. So while empirical calibration is a laudable 

aim, we are not there yet. However, we see the models reviewed here as serving a different 

purpose. Rather than being high-fidelity representations of particular target systems “out there,” 

they function as proof-of-concept exercises about the possible mechanisms underlying collective 

intelligence. They are theoretical arguments, not virtual experiments. 

The most promising way forward in the modeling work in social epistemology is to aim at a better 

integration with the existing modeling traditions in neighboring fields. As things stand, the existing 

philosophical models are often isolated from empirical literature as well as from each other, and 

do not form a methodologically coherent progressive research program. However, the research 

literature on human problem solving, both in individual and social contexts, is extensive, and 

various research fields such as cognitive science, sociology of science, social psychology, and 

economics have contributed to explaining both the failures as well as the surprising strengths of 

problem-solving groups. Furthermore, there is a long-standing modeling tradition on collective 

heuristic problem solving in management studies and organization science. If we take Kitcher’s 

original definition of social epistemology seriously, there should not be any reason for social 

epistemologists to ignore such work, nor should there be any discontinuity between philosophical 

social epistemology and the empirical social science of group problem solving. 
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