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Abstract1 
Accounts of mechanistic explanation require that complex 
cognitive phenomena can be decomposed into simpler 
subtasks. We provide a theory of explanation that rationalizes 
this requirement, and then we use a simple genetic algorithm 
exercise to demonstrate that evolution can produce designs 
that violate this functional modularity requirement.  

Keywords: mechanism; explanation; evolution; modularity; 
genetic algorithm  

Introduction 
Connectionism, dynamical systems theory, and new robotics 
have questioned whether the search for information-
processing mechanisms provides a feasible approach to the 
study of biologically evolved cognitive systems such as the 
human mind. Whereas approaches that have their origins in 
classical AI tend to conceive of cognition as a set of 
computational operations to be mapped onto physiological 
parts according to functional decompositions inspired 
directly by the programmer’s intuitions about possible 
efficient subroutines, the alternative research programs 
emphasize that biological evolution is likely to produce 
unintuitive designs of such complexity that renders 
heuristics based on decomposability and programming 
intuitions unusable.  

In this paper we analyze the problems that evolved 
solutions raise to the mechanistic understanding of cognitive 
phenomena. The problem of understanding non-intuitive 
designs produced by natural selection is well-known in 
philosophy of psychology (e.g., Clark 1997, Ch. 5), 
philosophy of biology (Wimsatt 2007), and now even in 
popular psychology (Marcus 2008), but it has proved to be 
difficult to articulate without a clear idea of what exactly it 
is that evolutionary tinkering is supposed to hinder. The 
main challenge for scientific understanding is often framed 
and explained by pointing to the path-dependent nature and 
the resulting unfamiliarity of the evolved design (Jacob 
1977). We argue that this is not the whole story. The aim of 
this paper is to provide an explicit theory of mechanistic 
explanation and understanding that will move us beyond 
intuitions towards a more systematic analysis of the nature 
of these challenges. We also combine our theory of 
explanation with a computational application of 

                                                             
1 The authors are listed in alphabetical order. This paper is based 

evolutionary design: problem-solutions generated by genetic 
algorithms. By analyzing the nature of solutions that genetic 
algorithms offer to computational problems, we suggest that 
evolutionary designs are often hard to understand because 
they can exhibit non-modular functionality, and that this 
creates problems for strategies of mechanistic explanation.  

 Mechanistic Explanation in the Cognitive 
Sciences 

According to the proponents of the mechanistic approach to 
explanation (Bechtel 2008; Craver 2007; Piccinini & Craver 
2011), a central goal of the cognitive sciences is to provide 
understanding of system-level properties of the cognitive 
system in terms of the properties of its physical component 
parts and their organization. The most developed 
philosophical account of strategies for reaching such 
mechanistic understanding is Bechtel and Richardson’s 
(2010) study of the heuristics of decomposition and 
localization (DL). The DL procedure goes roughly as 
follows. First, the different phenomena that the system of 
interest exhibits are differentiated. Then the phenomenon of 
interest is functionally decomposed, i.e., analyzed into a set 
of possible component operations that would be sufficient to 
produce it. One can think of this step as the formulation of a 
preliminary set of simpler functions that, taken together, 
would constitute the more complex input-output relation 
(the system-level phenomenon). The system is also 
structurally decomposed into a set of component parts. The 
final step is to try to localize the component operations by 
mapping them onto appropriate structural component parts. 
If this cannot be done, the fault may lie with the functional 
and structural decompositions or with the very identification 
of the phenomenon, and these may then have to be 
rethought. The identification and decomposition procedures 
will in the beginning be guided by earlier theories and 
common sense, but empirical evidence can always suggest 
that a thorough reworking of the basic ontology and the 
form of the possible explananda may be in order. 

What the schema of Bechtel and Richardson lacks is an 
explicit theory of explanation providing an account of what 
makes such decomposition and localization exercises 
explanatory. Whereas cognitive theories of explanation 
(Churchland 1989; Thagard 2012; Waskan 2006) focus on 
the internal models and processes of the individuals engaged 
in explanation-related tasks, such conceptualization is 
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misleading when thinking about the goal of research: 
understanding. We use the term ‘understanding’ in order to 
shift our focus from single explanations to a broader 
collective epistemic goal. Scientific understanding proper is 
not what happens inside individual heads, but is constituted 
by the collective abilities of the scientific community to 
reason about and to manipulate the objects of investigation. 
To conceptualize scientific understanding directly based on 
models of individual explanatory cognition is to commit a 
fallacy of composition.  

We therefore approach understanding as a public, 
behavioral concept. Understanding is a regulative label, 
which is attributed with regard to manifest abilities in action 
and correctness of reasoning. Suitable cognitive processes 
(comprehension), and possibly the possession of right 
mental models, taking place in the privacy of individual 
minds, are a causal prerequisite for possible fulfillment of 
these criteria, but these processes themselves are not the 
facts in virtue of which something is understood or not. 
They are not the criteria of understanding in the sense that 
we would have to know them in order to say whether 
somebody really understands something. The correctness of 
internal mental models is judged according to manifest 
cognitive performance, not the other way round (Ylikoski & 
Kuorikoski 2010).  

We take the principal criterion of understanding to be 
inferential performance: whether someone understands a 
phenomenon is assessed based on whether he or she can 
make correct inferences related to it. Thus our view of 
understanding can be linked to Woodward’s (2003) widely 
accepted account of scientific explanation, which tells us 
more specifically what kinds of inferences are constitutive 
of specifically explanatory understanding (see also Craver 
2007). Explanation consists in exhibiting functional 
dependency relations between variables. This is the 
connection between explanation and understanding: 
knowledge of explanatory relationships grounds 
understanding by implying answers to what-if-things-had-
been-different questions concerning the consequences of 
counterfactual or hypothetical changes in the values of the 
explanans variable. This is the important difference between 
explanatory information and purely descriptive information. 
Whether someone understands a phenomenon is evaluated 
according to whether he or she can make inferences not only 
about its actual state, but also about possible states of the 
phenomenon or system in question.  

Modularity and Understanding 
According to Bechtel and Richardson, decomposability is a 
regulative ideal in mechanistic model construction because 
complex systems are psychologically unmanageable for 
humans. Decomposition allows the explanatory task to be 
divided into parts that are manageable for cognitively 
limited beings, thereby rendering the system intelligible 
(Bechtel & Richardson 2010). The idea comes originally 
from Simon (1962), who claimed that complex systems 
have to be nearly-decomposable in order to be 

understandable for finite cognitive agents. Near-
decomposability means that the system can be decomposed 
into parts in such a way that the intrinsic causal properties of 
the parts are more important for the behavior of the system 
than their relational causal properties, which are constituted 
also by their environment and interaction. Near-
decomposable systems are thus hierarchical in the sense that 
the complex whole can be seen as made from a limited set 
of simpler parts and interactions. Hierarchical systems are 
more manageable for cognitively limited beings because 
their ‘complete description’ includes recurring or irrelevant 
elements describing similar recurring parts and non-
important interactions. The removal of such descriptions 
does not hamper our understanding of the system and thus 
eases cognitive load. 

Although there are a number of arguments that 
conclusively show that such informational economy by 
itself is not constitutive of understanding,2 we agree with 
Simon (and Bechtel and Richardson) in that a property 
closely related to near-decomposability, namely modularity, 
is a necessary condition for mechanistic explanations. In the 
case of causal-mechanistic explanations, the explanatory 
dependencies track the consequences of interventions 
(Woodward 2003; see fig. 1) and causal knowledge thus 
enables the goal-directed manipulation of the object of 
explanation. These answers are the basis of the inferential 
performance constitutive of causal understanding. 

 

Figure 1. Invariance under exogenous interventions 
distinguishes “deep”, causal, dependencies from mere 

correlations. P(Y|Z = z) is not the same as P(Y|set(Z = z)). 
 
Such answers to what-if questions are derived from internal 
or external representations of the object of understanding. In 
order for these answers to be well defined, the dependencies 
grounding the answers have to possess some degree of 
independence such that a local change in an aspect of the 
phenomenon under study cannot ramify uncontrollably or 
intractably. If local modifications in a part of a system 
disrupt other parts (dependencies) in a way that is not 
explicitly specified (endogenized) in the (internal or 
external) representation of the system according to which 
the what-if inferences are made, the consequences of these 
changes are impossible to predict and counterfactual 
assertions impossible to evaluate (Woodward 2003, 333). 

                                                             
2 See, e.g.,Woodward 2003, 362–364. 
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Therefore, a necessary condition for a representation to 
provide explanations, and thus understanding, of a 
phenomenon is that the modularity in the representation 
matches the modularity in the phenomenon. 

If we intervene on a causal input corresponding to 
variable Xi in a model of the studied system, and the 
intervention, no matter how surgical, also changes the 
dependencies within the system, or values of other variables 
themselves affecting variables causally downstream of Xi, 
the model does not give correct predictions about the 
consequences of the intervention. Hence, the model does not 
provide correct causal understanding of the system and the 
causal role of the variable in it. If the system cannot be 
correctly modeled on any level of description or 
decomposition so that it is modular in the way described 
above – if the system itself is not causally modular – no 
what-if-things-had-been-different questions concerning 
interventions in the system can be answered. This would 
mean that every local change brings about intractable 
changes elsewhere in the system to such an extent that there 
can be no representation that would enable a cognitively 
finite being to track these changes and make correct 
inferences about their consequences.  

The problem of understanding causally non-modular 
systems has received some attention in the philosophy of 
science literature (e.g., Bechtel and Richardson 2010, Ch. 
9). However, according to the DL schema, before we can 
even start thinking about searching for the causal-
mechanistic implementation of the complex system 
behavior, we need to formulate hypotheses about the 
possible functional decompositions of the behavior (see also 
Cummins 1983). For example, what kind of simpler 
subtasks could possibly produce complex cognitive 
capacities such as language production and comprehension, 
long-term memory, and visual object-recognition? 
Importantly, this task is separate, though not independent, 
from hypotheses concerning the implementation of the 
capacity. Although the understanding offered by the 
functional decomposition is not, strictly speaking, causal – 
component operations do not cause the whole behavior 
because they are constitutive parts of it – the modularity 
constraint on understandability still applies in the following 
way. We can only understand the complex behavior by 
having knowledge of its component operations, if we can 
make reliable what-if inferences concerning the possible 
consequences of changes in the component operations for 
the properties of the more complex explanandum capacity. 
For example, we provisionally understand working memory 
if we can infer from possible changes in its hypothesized 
component operations (such as differences in the properties 
of the postulated phonological loop or episodic buffer) to 
changes in the properties of the capacity. These inferences 
are only possible if the functional decomposition itself is 
suitably modular, i.e., the consequences of “local“ changes 
in component operations do not ramify in an intractable 
way, making the behavior of the whole completely holistic. 
We now argue that genetic algorithms demonstrate that 

design-by-selection can lead to such non-modular complex 
behavior. 

Genetic Algorithms 
From the point of view of AI, genetic algorithms 
(henceforth GAs) are a form of non-exhaustive but 
massively parallel search in the search space of a problem 
(Holland 1975; Mitchell 1996). Although GAs are not the 
only strand of evolutionary programming, they serve our 
purpose well because their basic principles are easy to 
understand and they are the most well-known kind of 
evolutionary programming outside computer science (Clark 
1997, 2001; Mitchell 2009). GAs are useful for a number of 
different purposes, but here we use a simple example 
originally from Mitchell (2009, Ch. 9), where a GA is used 
to evolve a behavioral strategy for a simulated agent.  

Mitchell’s model shows how an algorithm mimicking 
biological evolution can be used to develop a controlling 
program for a robot picking up soda cans on a 10x10 grid. 
Robby the robot can only see the squares adjacent to its 
location (center, North, South, East, West), and each turn it 
can either move one step to a particular direction, move at 
random, try to pick up a can, or do nothing. Each simulation 
run lasts for a predetermined amount of time steps 
(originally 200), and Robby's task is to pick up as many 
randomly situated cans as possible.  

Figure 2. Each “locus” in the genome G corresponds to one 
of the possible immediate environmental states of Robby, 
and each digit (the allele) to a move in that situation (e.g., 
‘0’  ‘move north’, ‘5’  ‘pick up’) (see Mitchell 2009, 

137). 

Initially a random population of software individuals is 
generated, each with a “genome” consisting of 243 random 
numbers. Each locus in the genome guides Robby’s 
behavior in a particular situation (Fig 2). The fitness score 
of each candidate in the population is calculated by running 
several simulation trials: crudely, the more cans the robot is 
able to pick up on average, the higher its fitness. Programs 
with the highest fitness are then used to form the next 
generation: they are paired randomly, and the genomes of 
the two parents are crossed over at a randomly chosen point 
to create the genomes of new individuals. Finally, for each 
locus of a descendant’s genome, there is a small probability 
(.005) that a mutation occurs in it. As a result, the new 
generation is based on the most successful variants among 
the previous generation, and the process loops back to the 
fitness-calculation phase. Thus the GA continues searching 
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for efficient solutions by charting new regions of the search 
space.  

After a few hundred generations, the evolved strategies 
start to achieve impressive results. As we replicated 
Mitchell’s simulation, we observed that after the 800th 
generation, the best strategies among evolved Robbys 
started to have higher fitness scores than a Robby 
programmed by a human designer (ultimately 480 vs. 440 
points).3 However, although solutions found with GAs are 
efficient, their behavior is often hard to understand. The 
ingenious behavioral strategies that the programs employ 
cannot be deciphered by simply looking at individual genes 
or sets of genes. Instead, it is necessary to look holistically 
at the broad phenotypic behavior of the robot. A nice 
illustration of this impenetrability of such evolved solutions 
is the fact that in some cases when a high-fitness Robby is 
in the same square with a can, it decides not to pick it up, 
but rather moves away from the square. While this behavior 
seems prima facie irrational, looking at the total behavioral 
profile of the robot uncovers a clever strategy: Robby uses 
cans as markers to remember that there are other cans on its 
side, and it explores the adjacent squares for extra cans 
before picking up the marker can. Thus by not treating cans 
only as targets but also as navigational tools, Robby uses its 
environment to extend its severely limited visual capacities 
and to compensate for its total lack of memory. 

Moreover, by examining the behavior of a highly efficient 
1500th generation Robby, it can be seen that this marker 
strategy manifests in slightly different ways in different 
environmental situations. It is not a discrete adaptation, but 
rather a collection of independently evolved sub-strategies. 
Furthermore, the marker strategy is tightly intertwined with 
another environment-employing “hack” that the 
sophisticated Robby uses: when there is already a lot of 
empty space on the grid, Robby employs a “vacuum-
cleaner” movement strategy. It follows the walls of the 
board, departing toward the center when it detects a can, 
employs the marker strategy if possible, and immediately 
after cleaning up its local environment, returns directly to 
the south wall to continue its round around the board. This 
strategy also includes an ingenious “bounce” feature: when 
Robby arrives to the corner preceding the wall that is 
parallel to its default navigation direction in an empty field, 
it bounces off the wall to increase the range of this search 
pattern.  

Such “kluges” are common to designs created by GAs. 
Like biological evolution, GAs can come up with solutions 
that a human designer would not think of. These solutions 
often offload parts of problem solving to the environment, 
and thus rely on a tight coupling between the system and its 
environment. And, as pointed out by Clark (1997, 2001), 
recurrent circuitry and complex feedback loops between 
different levels of processing often feature in systems 
designed by GAs. Such designs are often difficult to 
understand.  

                                                             
3 Code obtainable on request. 

We suggest that these difficulties in understanding are 
often created by the lack of modularity in the functional 
decomposition of the behavior. The high-fitness Robby 
(genome G in Fig. 1) mentioned in the paragraph above only 
leaves cans as markers in some specific situations, and only 
the totality of this selective marking strategy – together with 
navigational strategies utilizing cans and walls – constitutes 
the effectiveness of the can-search procedure. Looking at 
isolated genes in Robby’s genome only reveals trivially 
modular elements corresponding to elementary subtasks in 
its behavior: one gene corresponds to an elementary move in 
a specific environmental situation. But we cannot make 
inferences from local hypothetical changes in these 
elemental behaviors to consequent effects on fitness. The 
connection between any single elementary behavioral rule 
and the strategy is simply too complex and context 
dependent. A change in a single rule (in situation B; a can 
present; whether to pick up or not to pick up the can) has 
consequences for the effectiveness of the other elementary 
behavioral rules. Explanatorily relevant inferences would 
require an extra “level” of modular sub-operations between 
the individual movements and the strategy as a whole.  

The marker and vacuum-cleaner strategies mentioned 
above appear to be examples of such middle-level sub-
operations, but by themselves they are insufficient to yield 
understanding of the whole behavior of our most successful 
Robby. This is because the effectiveness of leaving a can is 
a result of the evolved coupling between the specific 
situations in which Robby leaves a can and the rest of the 
navigation behavior. Therefore, there is no way of 
independently altering these middle-level strategies. Also 
“the bounce” is intertwined with the rest of the vacuuming 
navigation and cannot be independently altered. In general, 
genetic algorithms do not often produce easily discernible 
designs. Rather, the interesting heuristics in the system’s 
behavior can only be revealed by simultaneously looking at 
constellations of different genes, and eventually, the whole 
genome.  

To recapitulate, our example exhibits several distinct (yet 
related) challenges to understanding: 

(1) The discernible middle-level strategies (marker, 
vacuum-cleaner) do not have dedicated structural bases. 
Instead, the nature of the design process leaves all atomic 
structural elements (the 243 DNA elements) open for 
exploitation by all capacities serving the main goal. 
Consequentially, the system is neither structurally nor 
behaviorally nearly-decomposable, but instead has a “flat 
hierarchy,” and strategies are implemented in highly 
distributed structures. 

(2) Challenge 1 above means that the interactions between 
subtasks tend to be strong: a change in one subtask 
constituting a part of the marker-behavior also affects the 
functioning of the vacuum-cleaner navigation. In general, 
the middle-level strategies can only be discerned and 
defined in a very abstract way, and the interaction-effect on 
their contribution to the overall fitness is so large as to make 
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any inferences about the consequences of partial changes in 
one strategy next to impossible. 

(3) The way in which the strategies contribute to the 
fitness of the individual is highly context-dependent and 
depends on the properties of the environment as well as the 
DNA of the agent. Even small modifications to the 
environment can lead to drastic changes in the performance 
of a strategy. For instance, we observed that adding only a 
few randomly placed extra walls on the grid radically 
collapses the average score of the successful Robby 
described above. 

 
Extrapolating from this very simple case, we contend that 
GAs may design behavior that cannot be tidily decomposed 
into hierarchical and modular subtasks, whose individual 
contributions would be easy to understand (i.e., we could 
infer how a change in a sub-routine would affect the 
behavior of the mother-task). Instead, feedback, many tasks 
using the same subtasks as resources, and tight system-
environment coupling lead to holistic design where almost 
“everything is relevant for everything.” The evolved 
functional architecture is flat in that there are few 
discernible levels of order between the elementary 
operations and the complex behavior. The counter-
intuitiveness of such flat architectures is apparent in the 
deep mistrust faced by connectionist suggestions for non-
hierarchical design of cognitive capacities (see e.g., 
Rumelhart and McClelland 1986 vs. Pinker and Prince 
1988). 

Furthermore, GAs underscore the path dependence of 
evolutionary problem solving. For sufficiently complex 
computational problems there are often several local 
maxima in the fitness landscape of the problem, and the 
population can converge to different maxima in different 
runs of the simulation. The functional decomposition that a 
human designer comes up with is just one possible solution 
among several others. Perhaps our biological evolution 
actually ended up with a radically different one. 

Lessons for the Study of Mind 
Genetic algorithms demonstrate that evolution can, in 
principle, lead to non-modular functionality. This imposes a 
limit on our ability to understand such behavior: if we 
cannot trace the consequences of changes in the sub-
operations, we cannot answer what-if questions concerning 
the complex behavior. Such behavior constitutes a thorny 
problem for mechanistic understanding of the 
implementation of the said behavioral capacities, since the 
DL heuristic cannot get off the ground: we do not even 
know what we are supposed to localize. We can now ask 
two questions: should we expect to find such non-modular 
functionality in nature, especially in human cognition, and if 
so, what attitude should we adopt with respect to this 
problem. Should the aim of causal-mechanistic 
understanding of the brain be given up, and be replaced, for 
example, with non-mechanistic dynamical models often 

employing a limited set of instrumentally interpreted macro-
variables? 

There are important disanalogies between GAs and 
biological evolution. As is the case with Robby, there is 
often no genotype–phenotype distinction. In biological 
evolution, however, genes do not directly cause properties 
of the phenotype, but rather participate in guiding 
ontogenesis. It has been suggested that ontogenesis itself 
favors modular design. GAs may also seem a problematic 
platform for exploring the possibilities of DL heuristics, 
since the lowest level of functional organization and the 
level of implementation are identical (i.e., the genome). 
However, we see no reasons why this would affect our 
argument. Moreover, the argument developed here is not 
only about genetic selection, but about selection in general, 
and failures of functional modularity may in principle also 
arise in the course of development – at least if the idea of 
neuronal group selection or “neural Darwinism” is taken 
seriously. 

The recent research on biological control networks 
(metabolic and gene regulatory networks) suggests that 
evolved modular organization is in fact the rule rather than 
the exception: control networks exhibit network modularity 
and the recurring modules (motifs) have easily discernible 
modular functions. Therefore, the question in the recent 
years has rather been to formulate an evolutionary 
explanation for this modular design. Genetic algorithms 
have been used to argue that modularity is not selected for, 
but that it is instead a byproduct of specialization of gene 
activity (Espinasa-Soto & Wagner 2010) or of selection 
against densely connected networks and long connections 
(Clune, Mouret & Lipson 2013). 

Most interesting for our case, Kashtan and Alon (2005; 
see also Kashtan et al. 2007) have demonstrated that when 
the goals themselves are composed of modularly varying 
sub-goals, evolution tends to produce modular functionality. 
It seems easy to see why this is the case. If the tasks to 
which the system has to adapt remain the same, the selection 
environment does not change, and the peaks in the fitness 
landscape are stable, then selection favors strategies that 
offload problem solving to that particular environment as 
much as possible. But if the task itself is composed of 
changing subtasks, it makes sense to design the adaptive 
response in such a way that a particular sub-operation can 
locally adapt to a local change in a subtask without altering 
the totality of the otherwise well-functioning behavior.  

In their research, Kashtan and Alon evolved several 
network models to compute complex Boolean functions, 
with fitness calculated according to how close the network 
output was to the target. They found that by modularly 
varying goals, it is often possible to considerably speed up 
the evolution. In our Robby simulation, we studied the 
effects of changing environment for the evolution of 
modularity by allowing the environment to change 
discretely from an initial no-walls (torus) condition to one 
with walls, and eventually to one with also random 
obstacles. Our results suggest that although “modularity in 
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tasks” does speed up learning, it can often prematurely weed 
out diversity in the population in such a way that, in the end, 
the global maximum for the main target task cannot be 
reached.  

It seems likely that our cognition has evolved in at least 
partly modularly changing selection environment, but the 
extent to which we should expect to find modular 
functionality in human cognition is hard to estimate. We 
suspect that the usefulness of many of the existing 
computational models investigating the evolution of 
biological modularity is constrained by the fact that the 
tasks (e.g. simple categorization, logic circuits) solved by 
the algorithms are straightforwardly computational and do 
not really involve any interesting behavioral aspects. This is 
why the Robby platform has certain advantages for 
exploring evolved functionality: The dynamic nature of the 
simulation allows the “emergence” of novel and irreducibly 
top-level strategies in a way that is lacking in the more static 
contexts.  
 
Because of the uncertainty related to the actual extent of 
non-modularity in human cognition, we stress the 
conditional nature of our argument. Our study of genetic 
algorithms and our analysis of the properties of the resulting 
designs only demonstrates that evolution can create designs, 
which are in principle beyond the understanding of unaided 
cognitive beings such as us.  

Yet there is nothing mysterious in such designs. Simon 
pondered whether the apparent abundance of hierarchical, 
nearly decomposable complexity was due to our selective 
attention to precisely such systems, but we believe this to be 
a somewhat hasty conjecture. We have no trouble finding 
and delineating systems, such as Robby, or possibly 
ourselves, that manifest functionally non-decomposable 
behaviors sustained by a flat architecture. However, there 
certainly might be a psychological bias that makes us see 
hierarchical design also where there is none. One way of 
coping with this obstacle to understanding is to realize that 
there are no fundamental reasons to limit the relevant 
epistemic agent to be an unaided human. Although only a 
human agent can experience a sense of understanding, this 
feeling should not be confused with understanding itself. 
Therefore brute computational approaches can produce 
understanding as long as the epistemic subject, the cognitive 
unit whose inferential abilities are to be evaluated, is 
conceived as the human-computer pair.  
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