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Abstract

In many daily life situations, people face decisions involving a
trade-off between exploring new options and exploiting known
ones. In these situations, observing the decisions of others can
influence people’s decisions. Whereas social information often
helps making better decisions, research has suggested that under
certain conditions it can be detrimental. How precisely social
information influences decision strategies and impacts perfor-
mance is, however, disputed. Here we study how social informa-
tion influences individuals’ exploration-exploitation trade-off
and show that this adaptation can undermine their performance.
Using a minimal experimental paradigm, we find that partici-
pants tend to copy the solution of other individuals too rapidly,
thus decreasing the likelihood of discovering a better solution.
Approximating this behavior with a simple model suggests, that
individuals’ willingness to explore only depends on the value of
known existing solutions. Our results allow for a better under-
standing of the interplay between social and individual factors
in individual decision-making.
Keywords: Exploration-exploitation trade-off, social learning,
decision-making

Introduction

Social information is crucial to help individuals and groups
adapt to novel circumstances. Through social interaction and
observation, people can collect up-to-date information about
their environment and efficiently deal with its uncertainty
(Hills et al., 2015). For example, by selectively copying suc-
cessful others, individuals can readily improve their decisions,
while avoiding the costs of trial-and-error learning (Mesoudi,
2011; Rendell et al., 2010; Wisdom, Song, & Goldstone, 2013).
Moreover, the transmission of known solutions in populations
can lead to the accumulation of knowledge, which can be
built upon and refined over time (Boyd, Richerson, & Henrich,
2011; Derex & Boyd, 2015; Tomasello, 1999; Moussaı̈d &
Seyed Yahosseini, 2016).

Yet, theoretical models from a range of disciplines suggest
that social information can also be detrimental for the effi-
ciency of decision-making (March, 1991; Mehlhorn et al.,
2015). Several mechanisms can underlie this counter-intuitive
effect. First, it might be due to the structure of the environment.
When exploration has an opportunity cost, the availability of
social information can motivate people to free-ride and wait
for others to discover a profitable solution, thus reducing the
group’s exploration range (Bolton & Harris, 1999). This is
particularly critical in dynamic environments that change in
time and space, and where social information might be out-
dated or ill-fitted to one’s own situation (Henrich & Boyd,
1998; Rogers, 1988). Second, the detrimental effects of social
information can be caused by social factors: One example

of such an effect are information cascades, where mutual re-
inforcement can lead groups to converge upon sub-optimal
solutions, while leaving potentially superior solutions unex-
plored (Bala & Goyal, 1998; Giraldeau, Valone, & Templeton,
2002; Salganik & Watts, 2008). Finally, individual factors
may impact how social information affects decision-making.
Social influence is often modulated by individuals’ perceived
skill, experience and knowledge about the environment, which
are not always accurately evaluated (Laland, 2004; Moussaı̈d
et al., 2017; Rendell et al., 2010). Additionally, individuals’
aspiration levels may change when observing the rewards of
very successful or unsuccessful others (March, 2006).

Recently, empirical studies have delineated how environ-
mental and social factors impact collective performance in
decision problems. It has been shown that reducing the flow of
social information among individuals – e.g., through sparsely
connected social networks – can enhance performance at the
group level (Fang, Lee, & Schilling, 2009; Derex & Boyd,
2016; Mason, Jones, & Goldstone, 2008). However, other
studies suggest the opposite: they show that networks that
facilitate the exchange of information between individuals
tend to enhance group performance (Derex & Boyd, 2015;
Mason & Watts, 2012). These conflicting conclusions suggest
that a clear picture of the processes at play and their interac-
tion between each other are currently not available. As most
simulation studies assume simplified decision rules, while ex-
perimental approaches often involve a combined manipulation
of environmental and social factors, making it difficult to un-
derstand the contributions of the different factors (Mehlhorn et
al., 2015). How do people respond to social information when
searching for a problem solution? How do they adapt their
exploration and exploitation decisions when exposed to the
behavior of a peer? Addressing these questions helps disen-
tangle the complex interactions between these processes and
facilitates understanding the resulting dynamics in its entirety.

In this paper we show that social information directly affect
individuals’ decision to explore or exploit, that is the used
decision strategy, and as a result hamper performance. We
examine how social information affects individuals’ tendency
to exploit their own best solution, to copy the solution of a
peer, and to explore their environment in search for superior
alternatives. To this end, we designed a experiment in which
we tightly control the value of social information. We aim
to eliminate several common confounding factors stemming
from temporal and spatial heterogeneity in the environment,



endogeneity of information propagation in the network, and
pre-existing individual variation of knowledge and skills (e.g.,
Mason and Watts (2012); Jayles et al. (2017); Jönsson, Hahn,
and Olsson (2015). This approach allows us to draw a clear
and simple picture of the isolated effects of social information
on how individuals solve an exploration-exploitation task.

Methods

We designed a sequential decision-making task with unidi-
rectional information flow in which participants played the
role of farmers trying to maximize their cumulative payoff
over 30 rounds. In every round, each participant could choose
between three options: (1) plant a new unknown crop (i.e.
explore a new solution), (2) plant the best crop he or she found
so far (i.e. exploit the best known solution), and (3) plant
the crop with the highest value that one other participant had
discovered while taking the same task before (i.e. copy social
information). Figure 1A shows the experimental interface of
the experiment.

Each crop was associated with a fixed payoff ranging from
1 to 100 points. The crop payoffs were randomly drawn from
an exponential distribution with λ = 0.05, capped at 100. That
is, many crops were associated with a low payoff, and a few
of them had a high payoff, with a maximal possible value of
100 (Figure 1B).

Each round, participants could either (1) draw a new value
from the exponential distribution and receive the associated
payoff (explore), (2) receive the payoff Xe associated to the
highest value that was drawn so far (exploit), or (3) receive
the highest payoff Xc that another participant had discovered
(copy). In each round, participants could see the payoffs Xe

and Xc while the payoff for explore was hidden.

Experimental treatment. To systematically examine the ef-
fect of social information on individual decision strategies and
performance, we implemented seven experimental treatments
and a control condition in a between-subjects design. In the
control condition, no social information was available, and
participants could only choose to explore or exploit. We gath-
ered the highest payoff found by each participant in the control
condition, that is Xe after 30 rounds of independent search. To
systematically assess the effect of these values on decision
strategies, we selected a subset of them to display as social
information Xc in the experimental treatments. We selected
the following values: 16, 21, 26, 31, 36, 46, and 56. This
setup allows the participants in the experimental conditions to
observe actual social information generated by other partici-
pants, and it ensures a uniform sample size over a wide range
of different values of social information. For each participant,
the value Xc was constant over the 30 farming rounds.

Procedure and participants. We ran two sessions of the
experiment on Amazon Mechanical Turk. In the first session
all participants were assigned to the control condition. In the
second session participants were randomly assigned to one of
the seven experimental treatments, where a specific Xc was
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Figure 1: Experimental design. (A) The experimental inter-
face as shown to the participants. In every round (season),
participants could choose to plant a new unknown crop (left
button), to collect the payoff associated to their best discov-
ered crop (middle button) or to collect the payoff associated
to the best crop found by another participant (right button).
(B) The cumulative distribution function of the exponential
random variable used to generate the payoffs every time a
participant decided to plant a new crop. The values of social
information used in our experimental conditions are marked
by red triangles.

selected from the first session.

Participant were informed that the payoffs could range from
1 to 100 and that most crops were associated to a low number
of points. They where also briefed about how the social infor-
mation was acquired. Participants were instructed to maximize
their cumulative payoff over 30 rounds and informed that at
the end of the experiment, their cumulative payoff would be
converted into real money (2,000 points = US$1). Before start-
ing the experiment, participants completed a short interactive
tutorial and had to pass a comprehension check. At the end
of each round, participants were informed about their payoff
from that round and their cumulative payoff.

In total 322 participants (145 Female, mean age = 36.9
years, SD = 10.9 years) completed the experiment with an
average of 40.2 participants (SD = 4.7) per experimental con-
dition. Participants were rewarded by US$0.75 plus a mone-
tary bonus based on their final score in the experiment (mean
bonus=US$0.62, SD=US$0.24). The average completion time
was 8 minutes. The self-reported understanding of the experi-
mental task was very high, as 97% of the participants reported
≥ 6 points on a 7 point Likert scale.

Models

To gain a deeper understanding of how social information
shapes individual decisions in our experiment, we first intro-
duce two simple models involving different decision strategies:
the benchmark model and the threshold model. In both models,
agents make a decision between (1) explore, (2) exploit, and
(3) copy at any given round t. The payoff ρ(t) that the agent
receives at round t depends on the chosen option as follows:

1. If the agent decides to explore, ρ(t) = x, where x is a
randomly drawn value from the exponential distribution
shown in figure 1B.

2. If the agent decides to exploit, ρ(t) = Xe, where Xe is the
highest value that has been drawn by the agent since the
beginning of the task.
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Figure 2: The building blocks of the threshold model. (A)
Graphical representation of the step function used for the
threshold model. The probability P(explore) equals 1 as long
as the payoff of the best known solution Xmax is lower than
the satisfaction level x0. Above that level, some exploration
is maintained with a probability p0, the base exploration rate.
(B) Distribution of the estimated threshold values x0 for all
participants. The the red curve indicates the best log-normal fit
(meanlog = 3.13, sdlog = .78, McFadden’s r2 = .58). (C) Dis-
tribution of the estimated values of p0 for all the participants.
The median value p0 = .17 is indicated by the red line.

3. If the agent decides to copy, ρ(t) = Xc, where Xc is the pay-
off associated with the crop provided by social information.

For both models we measure performance as the average
payoff that an agent achieves across the 30 rounds. We ran
610,000 repetitions of each model while systematically vary-
ing Xc between 0 and 60.

Benchmark Model. In the benchmark model, we assume
that the agents explore their environment during the first τ
rounds (i.e. the exploration phase) of the experiment, and
then choose the most rewarding option between exploit and
copy, during all the remaining rounds (i.e. the capitalization
phase) (Rapoport & Tversky, 1970; March, 1991). The unique
parameter of this normative model is the time τ at which the
agents switch from exploration to capitalization. We call the
optimal switching point τ∗ the value of τ that yields the best
mean performance for a given value of Xc. We estimate τ∗ by
systematically varying τ between 0 and 30 and pick the value
that yielded the best mean performance.

Threshold Model. For the threshold model, we assume a
simple decision strategy to facilitate the comparison with
the experimental results. The threshold model assumes that
the probability to choose the explore option P(explore) in
a given round is solely dependent on the maximum payoff
Xmax = max(Xe,Xc) that the agent can get by exploiting or
copying. Thus, in each round the agent will either explore
with a probability P(explore) or choose the exploit or copy
option that will yield the higher payoff with a probability
1−P(explore).
The probability P(explore) is specified by a simple step func-
tion:

P(explore) =

{

1, if Xmax < x0

p0, otherwise

Where x0 is a threshold aspiration level based on Xmax, and p0

is the base exploration rate (see figure 2A).

We fit the step function to the behavioral data of each
participant individually. For that we use the step func-
tion with p0 = 0 as a binary classifier to predict if a par-
ticipant explores. We define exploration as a positive and
exploitation as a negative outcome. We then calculate x0

such that the predictive accuracy of the classifier is maxi-
mized. Accuracy is defined as the (number of true positives+
number of true negatives)/30. For the most accurate x0 we
set p0 to the number of false negatives/30. That is, p0 is the
probability that exploration was wrongly classified as exploita-
tion or copy. This procedure provides an estimation of the
parameters x0 and p0 for each participant. The distributions
of the two parameters are shown in figure 2B-C. For the simu-
lations, we generate agents by picking x0 from the log-normal
distribution fitted to the estimated values of the participants
and p0 by the median of those.

Results

We now look at our experimental results and compare them to
the predictions from the two models.

Performance. The presence of social information has a
strong and non-monotonic influence on the participants’ per-
formance (Figure 3). We observe a decay in performance in
the conditions where participants received social information
of low value, specifically when Xc ranges between 21 and 31,
but not in case of Xc = 16. Overall, participants who received
no social information performed equally well or better than
those who received social information of value Xc lower than
46. For higher values of Xc social information was beneficial
and allowed participants to improve their performances as
compared to the control condition.

Furthermore, our simulations show that the threshold model
predicts a similar decay in performance around Xc = 26,
whereas the benchmark model – which was not calibrated
on the data but for maximizing performance – suggests that
participants could have reached a much better score with a
different decision strategy, such as exploring early to be able
to assess the relative value of Xc.

Decision strategies. To explain the decrease in performance
observed in our experimental results for values of Xc surround-
ing 26, and predicted by the threshold model, we analyzed the
underlying decision strategy of the participants. Specifically,
we looked at how frequently participants chose to explore, to
exploit and to copy in each treatment (figure 3B). We antici-
pated that participants would explore less in the presence of
social information, and indeed participants explored on av-
erage 10 rounds (SD = 5.5) in the control condition, while
exploring 8.1 (SD = 5.2) rounds when social information was
available (W = 6761.5, p = .04). Also we predicted that the
frequency of exploration would depend on the value of social
information. Surprisingly the data shows that the exploration
rate changes only marginally between the experimental condi-
tions. For Xc = 16 participants explored on average 7.8 rounds
(SD = 4), very close to the 7.5 rounds (SD = 5.4) of exploration
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Figure 3: Experimental results and model predictions. (A) Average individual performance as a function of social information Xc

as measured in the experiment and predicted by the two models. Average individual performance is calculated as the average
payoff per round, ∑(ρ(t))/30. Error bars indicate the standard error. (B) Proportion of explore, copy, and exploit decisions as a
function of the social information Xc.

for Xc = 56. That is, a reduction of exploration cannot explain
the decay in performance. However, as expected, the overall
tendency to copy increases with larger values of Xc, while the
amount of exploitation decreases at the same time.

Because the average performance of individuals in the con-
trol condition – where no social information was available – is
approximately 40 points, copying a crop of value Xc lower than
40 would necessarily be counter-productive. This is indeed
confirmed by the prescriptive simulations of our benchmark
model (blank green and blue circles in figure 3B). Yet, our
results show that for values Xc ≤ 36, people unknowingly copy
too frequently – thus capitalizing on a sub-optimal option. Our
threshold model predicts a similar trend.

Temporal changes. To draw a more accurate picture of the
decision strategies, we looked at the temporal changes of
behavior across the 30 rounds (figure 4). One striking ob-
servation is that the normative assumption that people would
explore first and copy or exploit later, as implemented in the
benchmark model and suggested by optimal stopping theory
(Rapoport & Tversky, 1970), clearly does not capture the
participants’ decisions. On the contrary, copying is the pre-
dominant behavior during the first few rounds independent of
the value of Xc. Only later on, if a better Xe is found, copying
rates diminish.

Participants tend to alternate between explore and copy at
the beginning of the experiment and, unsurprisingly, disre-
gard Xc, if Xc is not sufficiently good compared to what has
been sampled in the meantime. This dynamic is captured by
the threshold model. Thus the reduced performance around
Xc = 26, as shown in figure 3, can be explained by the fact
that participants tend to copy social information too frequently
during the first few rounds without being able to assess the
relative value of Xc. Whenever the value of social information
is lower than what they would have sampled independently
(i.e. Xc < 40), individual performance is undermined. Due to
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Figure 4: Proportions of explore, copy, and exploit as a func-
tion of the round in our experimental data (left column) and
as predicted by the threshold model (right column). Each row
refers to a different value of social information Xc (as indicated
in the gray rectangles on the right).



the non-zero base exploration rate of the participants (mod-
eled by p0 > 0) a better solution is eventually discovered
and exploited. But this discovery is delayed as compared to
the control condition, decreasing the number of rounds when
Xe can be exploited, and hence reducing overall individual
performance. For Xc = 16 a better solution for Xe can be dis-
covered very easily and thus the overall performance is not
undermined.

Discussion

In this paper we investigated how the presence of social in-
formation can influence individual strategy and performance.
We studied this question by means of a simple exploration-
exploitation task. In contrast to existing research, we only im-
plemented the most basic parts of the exploration-exploitation
paradigm, thus focusing on how social information affects de-
cisions. On that account, we ignored the structure of commu-
nication networks and considered unidirectional information
flow between two individuals only (Mason & Watts, 2012;
Toyokawa, Kim, & Kameda, 2014; Wisdom et al., 2013). Fur-
thermore, we fixed the social information to one static value
that does not change over time (in contrast to Mason and Watts
(2012); Mesoudi (2011); Toyokawa et al. (2014)), and we elim-
inated the spatial correlations between the payoffs (in contrast
to Mason et al. (2008); Wu, Schulz, Speekenbrink, Nelson,
and Meder (2017)

With this design, we discovered that social information can
undermine not only the collective, but also the individual per-
formance (cf. Wisdom et al. (2013)). In line with a recent
simulation study conducted by Barkoczi and Galesic (2016),
our results show that the detrimental impact of social informa-
tion can depend on the decision strategies employed and not
exclusively on the network structure connecting people or the
structure of the environment.

The rationale of early copying. The harmful effect of so-
cial information is caused by the participants’ tendency to
copy social information too early in the experiment, without
knowing its relative value compared to what can be discovered
by individual exploration. One common assumption is that
people start exploring their environment and with the help
of the gathered data evaluate the relative value of the social
information, and only then capitalize on the best solution (cf.
our benchmark model and also March (1991)). An alternative
strategy, assuming an already exhaustive search by the pre-
vious participant, could be to rely completely on the social
information provided and copy it all the time. Such a strat-
egy would minimize the cost for exploration. However our
results show that participants do not follow either of those
strategies, but rather prefer to copy in the very early phases
of the experiment and only then start to explore. But copying
does not provide any information about the environment, so
why do people adopt this seemingly irrational strategy? Early
copying can actually be reasonable if the payoff of the copied
solution is sufficiently good. In fact, the best crop found by
participants in the control condition had an average payoff of

56.2, which is above the average of the payoff distribution.
Thus, copying early could possibly have been beneficial if the
social information given to the participants was representa-
tive of the performance in the absence of social information,
which was not the case in our experiment. It is reasonable to
assume that participants expected the social information to be
representative of the underlying distribution of payoffs, which
could have then justified their early copying.

Sequential versus simultaneous treatment. Compared to
other studies, one specificity of our design is that the par-
ticipants completed the experiment sequentially rather than
simultaneously (Mason & Watts, 2012; Toyokawa et al., 2014).
Each participant in the experimental condition was exposed to
the best value found by another participant in the control con-
dition during independent search. Other experimental designs
implemented simultaneous interactions, in which participants
could see what others have found at the end of every round.
In this case, the dynamics might be different, as participants
could not reasonably assume that their peer had extensively
explored the environment beforehand. In this context, the
rationale of the early copying strategy would vanish, and we
would expect people to copy only later in the experiment.
In agreement with this interpretation, late copying has been
reported in experiments involving simultaneous interactions
(Mason & Watts, 2012).

Accuracy of the threshold model. Despite its simplicity,
the threshold model reproduces our experimental observations
quite closely, suggesting that it has captured key aspects of the
decision strategy. The model assumes that the probability to
search for a new solution only depends on the payoff of the
best available solution. The model therefore ignores most of
the available information, such as the payoff distribution of
previously explored solutions and the remaining number of
rounds. The fact that the model captures key dynamics in the
experiment without explicitly accounting for temporal dimen-
sion is surprising, since intuitively, people are likely to explore
less as the end of the experiment approaches. Nevertheless,
given the current quality of the model’s predictions, adding
a temporal component might only yield a marginal improve-
ment of the predictions. Hence, time appears as a cue that has
– if anything – a minor role on the decision strategy. Finally,
whereas the model currently implements a fixed threshold
value, it is also possible to consider an adaptive threshold that
would vary with the observed sample of payoffs.

Future research directions To examine basic aspects of
how social information affects decision strategies of explo-
ration and exploitation, we deliberately started from a simple
task. In future research we will gradually increase the com-
plexity of the decision-making setting – up to the point where
a complete, realistic situation can be described. This will con-
sist of implementing simultaneous interactions, varying group
size, manipulating the communication network, changing the
payoff distribution and injecting private information. These ad-
ditions would also allow us to determine the predictive power



of the model, by testing it in different environments.
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